The new developments of satellite remote sensing and Geographical Information Systems have given a new dimension in archaeological research and the management of cultural resources. Innovative satellite sensors of high spatial and spectral resolution, along with the use of high accuracy Global Positioning (GPS) systems and enhanced image processing systems offer great possibilities in the mapping of archaeological sites. In addition, the combination of the above technologies with other databases which contain archaeological and environmental information and with socio-economic models has direct consequences on our knowledge of use of cultural space in antiquity as well as on management policies of archaeological sites today.
Satellite images
Satellite images are used for capturing the wider area of archaeological sites, offering the possibility of comparison and classification of multispectral information. Archaeological research incorporates satellite remote sensing aiming at: firstly the identification of environmental parameters and their association to the topography of archaeological monuments and secondly, the assessment of the spectral signatures of archaeological sites with the ultimate goal of developing predictive archaeological models. In this way, satellite remote sensing constitutes a method of archaeological information retrieval, without the use of excavation or intensive survey procedures.
GIS in archaeological research
Moving one step further, Geographical Information Systems could be used for integrating archaeological data, together with satellite and aerial images, topographic and geological maps and other digital environmental and cultural information. One of the most important applications of the Geographic Information Systems is the development of predictive models for archaeological site assessment based on image and statistical processing techniques of satellite imagery and environmental information. These methods are aiming to the management of cultural resources and the decision making process in large development works. Prediction models are based on the hypothesis that the spatial distribution of archaeological sites is a function of environmental parameters that exist in the specific region of interest. Avoiding high-risk areas, namely areas that have a large probability to contain archaeological sites, it is possible to insure the protection of monuments, a better planning of the development works and the proper accommodation of large amounts of funds.
The need to develop of a Geographic Information System of Cultural Resources, with capabilities of processing and modeling digital images, is actually imposed by the effort of accommodating funds, due to the high cost of surface surveying and archaeological site registration and assessment during or prior the course of large scale construction works (e.g. highway or railway construction, expansion of rural estates, exploitation of coastal areas, construction of waste dump areas, a.o.). The adoption of such a system has direct consequences in enhancing the current inventory systems and electronic databases and in upgrading the current models of protection and the general strategy of management of cultural resources. A further advantage of GIS lies in their ability of updating their geographical information index in a continuous and interactive mode, processing and storing large volume of diverse origin data and creating thematic maps based on specific inquiries. The above can be used in archaeological research for modeling the settlement patterns of a region, locating and outlining high probability archaeological candidate sites, studying the communication or defense networks, specifying cost surface regions used for the exploitation of natural resources, etc. The creation of electronic thematic maps that present various cultural and environmental information simultaneously, could be extremely useful in solving problems resulted by the environmental and development plans, suggesting specific solutions for the protection, preservation and management of ancient monuments.
GIS application design and development
The Laboratory of Geophysical-Satellite Remote Sensing & Archaeo-environment has been active in the above fields with a number of research projects in Amorgos (electronic archaeological map of Amorgos and study of the communication network between towers of the historical period), Mantineia (analysis of the defensive network of the wider Mantineia region and detection of new outposts), Itanos and Lasithi (development of a GIS for the management of archaeological monuments and the mapping of archaeological sites), Crete (study of the Minoan peak sanctuaries and modeling of cultural topography) and Palaipaphos-Cyprus (construction of the archaeological atlas of Palaipaphos). Similarly, one of the current projects of the Lab is dealing with the Development of an Expert System for the Monitoring, Management & Protection of the Natural Landscape & Environmental Resources of the Island of Crete (EMERIC).
Geographic Information Systems offer a unique mode of representing the ancient environment and its settlement patterns through the modeling of geomorphology and hydrology, viewshed analysis and statistical processing and correlation between natural and cultural variables. This type of approach should not remain static. Instead, it should be continuously transformed through a constant feedback and updating of geographic and cultural information, in order to meet the challenges generated by the increase of archaeological information, the extreme environmental pressures (desertification, erosion, forest fires, etc.) and the development works.
Obviously, the above represent a shift of the archaeological research towards developing new cultural strategies based on information technologies. Yet, there are two main challenges that need to be faced in the immediate future: firstly, the development of a common strategy regarding the management of antiquities, the creation of homogeneous and unified databases and the integration or modification of the existing management systems and secondly, the dissemination of information aiming towards the better exploitation and enhancement of the Cultural Geographic Information Systems (C.G.I.S.).